

Draw circuit and explain Back to back test for determining regulation & efficiency of pair of similar transformers.

6

7

5

4

7

7

4

5

Δ

7

5

- b) Two transformers A & B are connected in parallel to a load of $(2 + j1.5) \Omega$. There impedance with reference to secondary are $Z_A = (0.15 + j0.5) \Omega \& Z_B = (0.1 + j0.6) \Omega$. There no load terminal voltages are $E_A = 207 \angle 0^\circ V \& E_B = 205 \angle 0^\circ V$. Find the power output & power factor of each transformer.
- 5. a) Explain commutation in D.C. Machines.

4.

a)

c)

6.

- b) Draw and explain following characteristics :
 - i) Magnetization curve (OCC) for dc generator (shunt) at 2 different speed.
 - ii) External characteristic (V_t vs I_a) for dc separately excited, dc shunt, dc compound generator.
 - Write a short note on "Methods of Cooling of transformer".

OR

- a) What are the speed control methods for d.c. shunt motor. Give details about any one method of speed control.
 - b) A 25 kW, 250 volts. D.C. machine has armature and field resistance of 0.06 Ω and 100 Ω respectively. Determine the total armature power developed when the machine works :
 - i) As a generator delivering 25 kW output.
 - ii) As a motor taking 25 kW I/P from the supply.
- **7.** a) Explain the effect of variation of rotor resistance and reactance on torque speed characteristic of 3-phase I.M.
 - b) A 4-pole, 50 Hz, 3-Ph, 400V, Δ -connected wound rotor induction motor has rotor resistance of 0.3 Ω /ph, runs at 1425 rpm of full load. Calculate the additional resistance to be inserted in rotor circuit to reduce the speed to 1250 rpm at constant load torque.
 - c) For a 3-Ph, Induction motor, show that per phase input power to rotor can be divided in the ratio of :
 1 : S : (1-S) = P_g : rotor ohmic loss : P_m.
 - OR
- 8. a) Explain the No-load & blocked rotor test on $3-\phi$ IM to find the Parameters of equivalent 6 circuit with necessary equations.
 - b) An 18.65 kW, 4 pole, 50 Hz, 3 ph I.M. has friction & windage losses of 2.5 percent of the output. The full load slip is 4% compute for full load.
 - i) the rotor Cu loss
 - ii) the rotor output
 - iii) the shaft torque
 - iv) the gross electromagnetic torque.
- **9.** a) Why starters are necessary for starting the 3-Ph, I.M.? Explain Auto-transformer starter with neat diagram.

www.solveout.in

NKT/KS/17/7281/7310

- Explain the working of double cage induction motor with the help of torque slip characteristics.
- c) The short circuit current of a squirrel cage I.M. on normal voltage is 3.5 times the full load current & full load slip is 4%. Determine the percentage tapping required on an auto-transformer started to start the motor against 1/3rd full load torque. Nelglect magnetising current.

OR

5

4

5

Δ

5

7

6

7

6

10. Write a short note on :

b)

- a) Speed control of 3-phase Induction motor.
- b) Crawling and Cogging in 3ph. I.M.
- c) Braking methods of 3-ph. I.M.
- **11.** a) Why 1-phase IM is not self-starting ? How double field revolving theory helpful in starting of $1-\phi$ I.M.
 - b) Explain working of capacitor start induction Run IM with torque speed characteristics.

OR

www.solveout.in

- **12.** a) Explain working of shaded pole induction motor. Draw its torque speed characteristics.
 - b) Explain split phase I.M. What are its advantages and disadvantages ?

NKT/KS/17/7281/7310

