B.E.Eighth Semester (Electronics & Telecommunication / Electronics & Communication Engineering) (C.B.S.)

Elective - II : Digital Image Processing

P. Pages: 3

Time : Three Hours

NKT/KS/17/7565

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Ouestion 3 OR Ouestions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.

SECTION - A

1. a) Explain the fundamental steps in Digital Image Processing.

_

7

- b) Consider the image segment shown:
 - i) Let $V = \{0, 1\}$ and compute the lengths of the shortest 4-, 8- and on path between p and q. If a particular path does not exist between these two points, explain why?
 - ii) Repeat for $V = \{1, 2\}$

3 1 2 1 (q)

 $2 \ 2 \ 0 \ 2$

1 2 1 1

(p) 1 0 1 2

OR

2. a) Explain in details image sensing and acquisition process.

- 7
- b) Explain the spatial and gray level resolution. Taking one example differentiate between these two quantities.
- **3.** a) Write short note on Histogram processing.

6

b) The gray level histogram of an image is given below:

Gray Level Frequency of occurrence

0	400
1	700
2	1350
3	2500
4	3000
5	1500
6	550
7 ~ ((0

Compute the gray level Histogram of the o/p image obtained by enhancing the i/p by Histogram equalization technique.

OR

4. a) Explain the bit-plane slicing technique. Show the different bitt planer of 3-bit image shown below.

6	6	6	6	7	7	7	7	7
6	5	5	5	4	4	4	4	7
6	5	3	3	2	2	2	4	7
6	5	3	1	_1	1\\	2	4	7
6	5	3	1, (0	1	2	4	7
6	5	3	I	7(1)	1	2	4	7
6	5	3	3	3	2	2	4	7
6	5	5	5	5	4	4	4	7
6	6	6	6	7	7	7	7	7

b) Describe the RGB, color model.

5. a) Generate 8×8 Harr transform from Harr function and show how it is n "orthogonal" transform.

b) Write short note on wavelet transform.

OR

6. a) Find a 8×8 transformation matrix for the Hadamoral transform. State any two properties of Hadamoral transform.

b) Explain 2-dimensional DFT.

a) Explain the generalized image compression model with neat block diagram.

b) Explain coding redundancy, interpixel and psychovisual redundancy.

OR

8. a) Explain LZW coding technique.

7

5

1/	b)	Write a short note on MPEG and JPEG.	7
9.	a)	Write short note on Fourier descriptors.	7
	b)	Write short note on chain code descriptor.	6
		OR	
10.	a)	What is the order of the shape number for the figure shown? Obtain the shape number.	6
6	b)	Explain Gradient and Laplacian operator.	7
11.	a)	Draw and explain the digital image restoration system.	7
	b)	Write short note on Inverse/Pseudoinverse filtering.	6
		OR	
12.	a)	Write short note on digital implementation of the Weiner filter using DFT method.	7
	b)	Explain the following terms related to image restoration. i) Blind Deconvolution ii) Extrapolation and Super-resolution.	6

058 058

