B.E.Eighth Semester (Civil Engineering) (C.B.S.) Elective - II : Water Transmission & Distribution System

P. Pages: 4

1.

2.

Time : Three Hours

NKT/KS/17/7535

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Diagrams and chemical equations should be given whenever necessary.
 - 11. Illustrate your answers whenever necessary with the help of neat sketches.
 - 12. Use of non programmable calculator is permitted.

A multi reservoir system consists of four reservoirs P, Q, R & S with their HGL values 125m, 95m, 135m & 85m resp. They are connected by pipe system as given below with two Junctions J1 & J2.

The details of pipes as per their connectivity are given below.

3	Pipe	length	resistance
2	10	m	R
J	PJ ₁	250	200
_	J ₁ Q	200	350
	$\mathbf{J}_1 \mathbf{J}_1$	300	250
	J_1R	270	200
	J_2S	300	280

The head loss is given by $hf = RQ^2$ in which hf is in meters & Q in m³/sec. Determine the discharges & their directions in each pipe & also HGL values at the junctions.

OR

Three Reservoir are connected to each other at junction point J. Find out the discharge in each pipe & also HGL at junction point J. The water table in the reservoir their length, diameter & CHw values are given in table.

A pump is installed as shown in fig. 1. whose characteristic equation is given by $Hp = 17.19 - 42.2 \text{ Qp}^{1.852}$ where Hp is the head developed by pump & Qp is the discharge flowing through pump.

www.solveout.in

Pipe	FSL of reservoir	length of pipe	Diameter	CHw
	(met)	(met)	(mm)	
1-J	100	300	300	100
2-J	90	150	200	130
3-J	80	200	300	100

NKT/KS/17/7535

P.T.O

A Network as shown in fig 2 is to be analysed by Newton Raphson method using H-eqⁿ. Frame the equations & carry out one interation of Network analysis, use head loss equation as $hf = rQ^{1.85}$.

13

13

Analyse the distribution network shown in fig. 2 by using ΔH equation of linear theory method.

Using node flow analysis determine discharges & available heads at all nodes. Minimum HGL required at all nodes 1, 2, 3, 4 are 92 m, 94 m, 91 m & 88 m resp. Use the relation nf = $RQ^{1.852}$. The resistance of the pipe are shown along the length of pipe in fig. 3.

What is node flow compatibility ? Explain in detail.

b) Differentiate between Hardy-Cross method of balancing head & balancing flow.

www.solveout.in

NKT/KS/17/7535

3.

4.

5.

6.

a)

For the network shown in fig. 4. Find the total number of trees using graph theory & sketch all the trees in which 3, 4, 6 & 8 are absent.

Differentiating path concept & minimum spanning of tree method.

Explain cost head loss ratio criterion method of network optimisation.

In the network shown in fig. 5 node '1' is source node with HGL value 100 m. node 2 to 6 are demand nodes with minimum HGL values of 92m, 91m, 90m, 88 m & 87 m resp. The nodal demands at node 1 to 5 are 3.1, 4.2, 2.9, 4.81 & 4.15 m³/m resp. The length of pipe from 1 to 5 is 320, 380, 340, 250 & 270 m resp. The cost function is given by formula $C = 0.15 D^{L.45}$ where C is the unit cost of pipe in Rs. D is diameter in mm. Assume CHW for all links 100. Design the network by using cost-head loss ratio method.

- Design the network described in Q. 9 & shown in fig. 5 by using linear programming method :
 - a) Frame LP model.
 - b) Obtain basic feasible solution.
- 11. A pumping main used to fill a reservoir of 5 million litres capacity in a day. The static lifts is 32 m. The pumping is to be done in two equal instalments of 6 hours each per day. The length of the main is 8 kms. The overall efficiency of pumping system is 70%. The cost of electricity is Rs. 5.0 per kwh. & assumed to be constant for next 30 years. The rate of interest is 9%. The OMR charges are 10% of the initial capital cost select the optimal diameter of the pumping main :

Pipe size	Unit cost	CHw
(mm)	(Rs)	\bigcirc
250	490	90
350	700	110
450	1020	100

www.solveout.in

NKT/KS/17/7535

a)

b)

8.

9.

10.

P.T.O

14

5

8

13

The following data refers to a Storage Reservoir-

12

Time (Hrs)	Demand (m^3/min)
0 - 2	2
2 - 4	4
4 - 6	8
6 - 8	12
8 - 10	20
10 - 12	14
12 - 14	8
14 - 16	6
16 - 18	10
18 - 20	14
20 - 22	12
22 - 24	6

4

www.solveout.in

Pumping is continuously for 24 hours. Determine :

- Uniform rate of pumping. i)
- ii) Storage capacity of reservoir.
- Time when reservoir is full or empty. iii)

NKT/KS/17/7535