B.E.(Electronics Engineering / Electrical Engineering (Electronics & Power) / Electronics Telecommunication / Electronics Communication /

Mechanical Engineering) Semester Third (C.B.S.)

Applied Mathematics - III Paper - I

P. Pages: 3
Time: Three Hours

KNT/KW/16/7212/7217/7222/7227

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated. Attempt **six** questions as follows:
 - 2. Question 1 OR Questions No. 2.
 - 3. Question 3 OR Questions No. 4.
 - 4. Question 5 OR Questions No. 4.
 - 5. Question 7 OR Questions No. 8.
 - 6. Question 9 OR Questions No. 10.
 - 7. Question 11 OR Questions No. 12.
 - 8. Assume suitable data whenever necessary.
 - 9. Use of non programmable calculator is permitted.
- 1. a) If $L\{f(t)\}=\overline{f}(s)$, then prove that $L\{t^n f(t)\}=(-1)^n \frac{d^n}{ds^n} \overline{f}(s)$. Hence find $L[t\sin 2t]$.
 - Find $L^{-1} \left\{ \frac{S^2}{(S^2 + 4)(S^2 + 9)} \right\}$ by convolution theorem.

OR

- 2. a) If $f(t) = \cos 2t$, $\pi < t < 2\pi$ and f(t) = 0, otherwise, express f(t) in terms of unit step function and find its Laplace transform.
 - Solve $\frac{d^2x}{dt^2} + 9x = \cos(2t)$, given x(0) = 1, $x(\frac{\pi}{2}) = -1$, using Laplace transform technique.
- 3. a) Find Fourier Series for $f(x) = x x^2$ in interval -1 < x < 1.
 - b) Find Fourier Sine transform of $e^{-|x|}$ and hence show that : $\int_{0}^{\infty} \frac{x \sin{(mx)}}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0$

OR

- 4. a) Obtain half range sine series for $f(x) = \pi x x^2$ in the interval $(0, \pi)$.
 - b) Find Fourier transform of

$$f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1, \end{cases}$$

hence find $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

5. Find the extremals of

$$V(y) = \int_{x_0}^{x_1} \left\{ (y'')^2 - 2(y')^2 + y^2 - 2y \sin x \right\} dx$$

OR

- 6. Find the curve passing through the points (x_1, y_1) and (x_2, y_2) which when rotated about x axis gives minimum surface area.
- 7. a) Prove that $u = e^{-x} [x \sin y y \cos y]$ is harmonic. Find V such that f(z) = u + iv is analytic.
 - b) If $f(a) = \oint_C \frac{3Z^2 + 7Z + 1}{Z a} dz$, where C is a circle |Z| = 2, find values of
 - i) f(3)
 - ii) f'(1-i)
 - iii) f''(1-i)
 - Expand the function $f(Z) = (Z^2 + 4Z + 3)^{-1}$ by Laurent'z Series valid for
 - a) |<|Z|<3
 - b) |Z| < 1
 - c) |Z| > 3

OR

8. a) Find the value of $\oint_C \frac{(12Z-7)}{(Z-1)^2(2Z+3)} dz$

by using Residue theorem, where C is a circle |Z|=2.

- Evaluate $\int_{0}^{2\pi} \frac{1}{5 + 3\cos\theta} d\theta$ by contour integration.
- Evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^2 + a^2} dx$ by contour Integration.

9. a) Solve:

$$(mz-ny)p+(nx-\ell z)q=\ell y-mx$$

where
$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$

b) Solve:

$$(D^2 + 2DD' - 8D'^2)z = e^{2x+y} + \sqrt{2x+3y}$$

where
$$D = \frac{\partial}{\partial x}$$
, $D' = \frac{\partial}{\partial y}$

OR

7

6

10. a) Solve using method of separation of variables,

$$4\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 3\mathbf{u}$$
, given that

$$u = 3e^{-y} - e^{-5y}$$
 when $x = 0$.

b) Solve using Laplace transform method:

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{x} \frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{x},$$

$$x > 0$$
, $t > 0$, $U(x,0) = 0$, $U(0,t) = 0$

11. a) Investigate the linear dependence of vectors $X_1 = [1,1,1,3], X_2 = [1,2,3,4], X_3 = [2,3,4,7]$

and if possible find the relation between them.

b) Find the Modal Matrix for the matrix

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

c) Use Sylvester's theorem to show that $2 \sin A = (\sin 2) A$

$$2\sin A = (\sin 2)A$$

where
$$A = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$$

OR

12. a) If $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as Linear polynomial of A.

Solve $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} - 10y = 0$, given y(0) = 3, y'(0) = 15 by Matrix Method.

Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy + 4zx - 2yz$ to the canonical form by an orthogonal transformation.
