

B.E. Sixth Semester (Computer Technology) (C.B.S.) Computer Graphics

Time : Three Hours

1.

b)

b)

* 0 1 2 9 *

KNT/KW/16/7401

Max. Marks: 80

7

6

10

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - Solve Question 5 OR Questions No. 6.
 Solve Question 7 OR Questions No. 8.
 - Solve Question 7 OR Questions No. 8.
 Solve Question 9 OR Questions No. 10.
 - Solve Question 9 OR Questions No. 10.
 Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.

a) Define computer graphics? Explain its various applications in detail.

- b) Describe in brief about following
 - I) Interlacing
 - II) Display processor

OR

2. a) Explain in detail about Graphics pipeline.

- Describe in brief about following:
 - I) Random-scan display processor
 - II) Vector-scan display processor
- **3.** a) Consider the Polygon defined by vertices $P_1(1,2), P_2(4,5), P_3(7,2), P_4(7,5) P_5(4,8), P_6(1,5).$

Then perform polygon filling by following algorithm. Show all the computation.

- I) Edge fill Algorithm
- II) Edge flag Algorithm

Explain in detail about half toning techniques.

w.solveout

KNT/KW/16/7401

P.T.O

State and explain about simple 4-connected seed fill algorithm for polygon filing. Also perform polygon filling by same algorithm for the polygon whose vertices are defined as follows:

Vertex	A	В	C	D	Е	30
X-coordinate	1	8	8	6	1	2
Y-coordinate	1	1	4	6	6	J)

Assume seed pixel (4,3).

a)

- b) Explain in detail about various antialiasing techniques. Also explain. Aliasing effect.
- 5. a) Consider a polygon with vertices as follows:

Vertex	V_1	V ₂	V ₃	V_4	V_5	V_6	V ₇	V_8
X-coordinate	1	0	0	1	2	3	3	2
Y-coordinate	0	1	2	3	3	2	1	0

Then perform clipping of a line segment from $P_1(-1,-1)$ to $P_2(3,3)$ to above polygon as window using Cyrus Beck algorithm.

b) Determine the eleven points on a Bezier curve with equidistant parametric values having control points as follows:

20	$(x_{0,y_{0}})$	(50,180)
5	$(x_{1,y_{1}})$	(250,100)
2)	$(x_2) y_2)$	(600,300)
	(x ₃ ,y ₃)	(500,50)

Assume that all these control points are distributed over a screen of resolution 640 x 350.

OR

- 6. a) Consider the polygon vertices as $P_1(2,2)$, $P_2(2,7)$ and $P_3(7,2)$. Also consider the window vertices as $W_1(-4,4)$, $W_2(-4,-4)$, $W_3(4,-4)$ and $W_4(4,4)$. Then perform polygon clipping using Sutherland Hodgman algorithm.
 - b) A window is defined by coordinates 0,50, 0,50 respectively and line P₁ (-10,40) P₂ (30, 20). Then perform line clipping by midpoint subdivision algorithm.
- 7. a) Find a normalized transformation that maps a window whose lower left corner is (1,1) and 6 upper right corner is (3,5).
 - A view port that is entire normalized device screen.
 - A view port that has left lower corner at (0,0) and upper right corner at (0.5, 0.5)

v.solveout

KNT/KW/16/7401

I)

II)

7

7

7

7

Find reflection of a triangle whose vertices are defined as follows about a line y = 2x+10.

Vertex	x-coordinate	y-coordinate
А	1	1
В	5	1
С	1	5

8 a) Find the instant transformation which converts figure A into figure B. The vertices for both the figure are defined as follows:

	F	igure A	Figure B		
2)	Vertex	Co-ordinates	Vertex	Co-ordinates	
2	A_1	(3,2)	B_1	(-3,-1)	
	A_2	(2,1)	B ₂	(-4,-2)	
	A ₃	(4,1)	B ₃	(-2,-2)	

Find the complete viewing transformation that maps a window in word co-ordination x tends from 1 to 10 and y tends from 1 to 10, on to a viewport with x tends from $\frac{1}{4}$ to $\frac{3}{4}$ and y tends from 0 to $\frac{1}{2}$ and then maps a window with x-tends from $\frac{1}{4}$ to $\frac{1}{2}$ and y tends from $\frac{1}{4}$ to $\frac{1}{2}$ is normalized device space into a viewport with x tends from 1 to 10 and y tends from 1 to 10 on physical device.

- 9. a) Derive a transformation matrix for rotation of an angle about an arbitrary line in 3D plane.
 - b) Explain in detail about Pointer's Algo. for hidden surface removal.

OR

- **10.** a) Explain in detail about z-buffer algorithm for hidden surface removal. Also give its advantages and disadvantages.
 - b) Explain in detail about following.I) Parallel projection.II) Perspective projection.
- **11.** a) Explain various features provided by open GL.
 - b) Explain in detail about following:I) GL II) GLU III)

OR

w.solveout.

GLUT

a) Explain about 3D viewing pipeline with respect to open GL.

Write a sample program to generate a circle of radius = 10 in open GL.

KNT/KW/16/7401

12.

b)

b)

b)

7

9

4

7

6

7

6

6

