B.E. Eighth Semester (Electronics & Communication / Electronics & Telecommunication Engineering) (C.B.S.)

Elective - III : CMOS VLSI Design

P. Pages: 2 Time: Three Hours			KNT/KW/16/75 ★ 0 2 7 9 ★ Max. Marks				
	Notes	s: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	All questions carry marks as Solve Question 1 OR Question 3 OR Question 5 OR Question 7 OR Question 7 OR Question 9 OR Question 9 OR Question 11 OR Question 9 Question 11 OR question 12 OR question 12 OR question 13 OR question 14 OR question 15 OR question 15 OR question 16 OR question 16 OR question 17 OR question 17 OR question 18 OR question 18 OR question 19	ions No. 2. ions No. 4. ions No. 6. ions No. 8. ions No. 10. stions No. 12. neatness and adever necessary. never necessary.	with the help of	1263	
1.	a)	Explain phenom	the operation of nMOS enha enon.	ncement transi	stor. Hence expla	in the pinch off	7
	b)		MOS device equations (DC) to Vds) in three regions of ope		rce current (Ids)	Vs Drain to source	6
2.	a)	Calculat	e the native threshold voltage	e for an n-trans	istor at 300°K wi	th	7
	0		$8 \times 10^{16} \text{ cm}^{-3}$, SiO ₂ gate ox e, $\phi_{\text{ms}} = -0.9 \text{ V}$, $\phi_{\text{fc}} = 0$)	ide with thickn	ess 200 Å	0	1
	b)	Explain	the small signal equivalent n	nodel for a MO	S transistor.	265	6
3.	a)	-	the five regions of operation equations for V _{out} in the dif		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	characteristic. Hence	9
	b)	Explain	the operation of BICMOS in	overter.	9)		5
4.	a)	Calculat	e the Noise Margin for a CM	IOS Inverter op	perating at 3.3V w	with $V_{th} = 0.7V$,	8
	26		$0.7V$, where $\beta_h = \beta_p$. What Noise Margin.	changes can b	e made in VTC of	f CMOS inverter to	0)
E	b)	Design 1	ollowing functions using tra	nsmission gate		W/2	6

2:1 MUX

EX – OR gate

i) ii)

- **5.** a) Design CMOS compound gates for the following functions :
 - i) $F = (\overline{(A \cdot B) + (C \cdot D)})$
 - ii) $F = (\overline{((A \cdot B) + C) \cdot D})$
 - iii) $F = (\overline{(A \cdot B \cdot C) + D})$
 - b) Design a CMOS positive edge triggered D flip flop.

OR

- **6.** a) Design a 4 input multiplexer using CMOS switches.
 - b) Explain SRAM & DRAM.
- 7. a) Explain capacitance estimation of MOS device indicating accumulation depletion, inversion and explain its variation as a function of Vgs.
 - b) Describe static power dissipation, dynamic dissipation, short circuit dissipation and hence total power dissipation.

OR

7

6

- **8.** a) For switching characteristics for CMOS inverter define :
 - i) RISE time
 - ii) FALL time
 - iii) Delay time
 - b) Suggest schemes to reduce rise and fall time of an inverter.
 - c) Explain Charge Sharing.
- 9. a) Draw the stick layout for the function $Z = \overline{A + BC + DE}$ using CMOS logic. Also draw Euler's graph and find the Euler's path.
 - b) What is Latch up? How it can be prevented?

OR

- **10.** a) Explain the terms :
 - i) Fan in,
 - ii) Fan out for CMOS
 - b) Explain clocking strategies in CMOS.
- 11. a) State and Explain types of Faults.
 - b) Explain need for Design for testability.

OR

- 12. a) Explain Built In Self Test (BIST)
 - b) Explain Boundary Scan.
