B.E. Eighth Semester (Electronics & Communication / Electronics & Telecommunication Engineering) (C.B.S.)

Elective - II: (DIP) Digital Image Processing

P. Pages: 3

Time: Three Hours

KNT/KW/16/7565

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Ouestion 3 OR Ouestions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Diagrams and chemical equations should be given whenever necessary.
- 11. Illustrate your answers whenever necessary with the help of neat sketches.
- 12. Use of non programmable calculator is permitted.
- 1. a) What are different Image acquisition techniques? Explain any one of them.
- 7

b) Define the term 4–, 8– and m-path between two points p and q.

6

OR

2. a) What are different distance measures used for image? Compute De, D4 and D8 distance between two pixels p and q in the image shown below.

b) Consider the image segment shown, let V = [0, 1] and V = [1, 2]. Compute the length of the shorten 4-, 8- and m-path between p and q. If particular path does not exist between these two points, explain why?

$$2 \ 2 \ 0 \ 2$$

3. a) Determine the convolution of 2D signals :

$$x(m,n) = \begin{bmatrix} 2 & 5 & 3 \\ 1 & 4 & 1 \end{bmatrix}$$
 and $h(m,n) = [123]$.

7

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

OR

4. a) Generate 4×4 slant transform and show how it is "orthogonal" transform.

10

b) Obtain the 4 – length DCT for the following discrete sequence :

4

$$\{1,3,-2,4\}$$

5. a) What is histogram matching? Explain.

6

b) The Gray level histogram of an image is given below:

7

Gray level	0	1	2	3	4	5	6	(27)
Frequency of	400	700	1350	2500	3000	1500	550	0
occurrence				- Ti	25	6		

Compute the gray level histogram of the output image obtained by enhancing the input by histogram equalization technique.

OR

6. a) Explain bit plane slicing. For 4×4 4 bit image obtain the image by considering higher two bits only.

6

- 11 4 10 8
- 12 9 2 5
- 4 2 7 5
- 0 1 6 2
- b) Obtain the output image by applying 3×3 median filter of the following image.

- $\begin{bmatrix} 2 & 4 & 15 & 0 \\ 3 & 5 & 2 & 6 \\ 11 & 0 & 2 & 10 \\ 6 & 16 & 0 & 0 \end{bmatrix}$
- 7. a) Explain the generalized image compression model with neat block diagram.

8

b) Determine which bit, if any is in error in the Hamming encoded messages: 1100111, 1100110 and 1100010 what are the decoded values?

6

OR

8. a) Describe a point detection method for detection of isolated points in an image.

- b) Decode the message 0.23355 using arithmetic coding. The symbols with probabilities are:

 Symbol Probability
 - are: 9

- a \longrightarrow 0.2
- $e \longrightarrow 0.3$
- $i \longrightarrow 0.1$
- o \longrightarrow 0.2
- $u \longrightarrow 0.1$
- 9. a) Discuss the global processing via though transform. Use though transform to find a straight line for data points (0,1), (1,1), (2,2) and (3,3).
- _
- b) Draw the medial axis of a circle, a square, a rectangle and equilateral triangle
- 6

OR

An image contain two types of regions R_1 and R_2 . The prior probabilities are $P_1 = 0.4$ and $P_2 = 0.6$ respectively. Probability density functions of regions R_1 and R_2 are denoted by

Describe the region splitting and merging techniques for image segmentation.

- $P_1(t)$ and $P_2(t)$ respectively, where :
- $P_1(t) = 0.25 0.0625 \mid 4 z \mid \text{ for } 0 \le z \le 8$
- $P_2(t) = 0.2 0.04 |9 z|$ for $4 \le z < 14$
- Determine the optimum threshold image segmentation.

7

b) Write a short note on Fourier descriptor.

6

OR

12. a) Sketch the Gradient and Laplacian for each mask.

(

b) Write a short note on chain code descriptor.

7

11.

a)

