B.E. Eighth Semester (Civil Engineering) (C.B.S.)

Elective - II : Advanced Structural Analysis

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Illustrate your answers whenever necessary with the help of neat sketches.
10. Use of non programmable calculator is permitted.
1.

Write a computer programme for beams on elastic foundation by giving suitable examples.

OR

2. Derive an expression for semi - circular beam subjected to uniformly distributed load 'w' in kN / m and simply supported by three columns spaced equally. Refer Fig. 1.

Find out max. bending moment and max. torsional moment at X .
3. Analyse the plane frame shown in fig. 2. $\mathrm{E}=22 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}, \mathrm{C} / \mathrm{S}$ area for $\mathrm{AB}=0.6 \mathrm{~m} \times 0.3 \mathrm{~m}$ and C / S area for $\mathrm{BC}=0.3 \mathrm{~m} \times 0.5 \mathrm{~m}$.

OR fig. 3 considering axial deformation.

5. Find displacement at node 2 of the grid structure shown in fig. 4 member 1 is loaded with uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ and on member 2 concentrated load of 50 kN is acting at centre.
$\mathrm{E}=2.54 \times 10^{7} \mathrm{kN} / \mathrm{m}^{2}, \mathrm{G}=8.8 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$
c / s of beams $=300 \times 600 \mathrm{~mm}$ and $\mathrm{Ixx}=\mathrm{db}^{3} / 3$.

Fig. 4

OR

6. Analyse the plane grid shown in fig. 5 using direct stiffness method.

Fig. 5
$\mathrm{E}=2 \times 10^{5} \mathrm{MPa}, \quad$ Iyy $=1500 \mathrm{~cm}^{4}$
$\mathrm{G}=1 \times 10^{5} \mathrm{MPa}, \quad \mathrm{Ixx}=2000 \mathrm{~cm}^{4}$
i) D'Alemberts Principle
ii) Inertia force
iii) Equation of motion
iv) Single degree of freedom system.

OR

8. Explain the following terms in detail.
i) Damping
ii) Natural Frequency
iii) Transmissibility ratio
iv) Effect of Gravitation force
9. a) Explain "DUHAMEL's" integral in references to impulsive loading and derive the expression for DLF for a rectangular load.
b) Draw the first three mode shapes for a beam fixed at one end and free at the other. Use Euler - Bernoulli approach.

OR

10. a) Explain "DUHAMEL's" integral in references to impulsive loading and derive the expression for DLF for triangular load.
b) Explain approximate method for analysis of impulsive loading.
11. a) What are different IS 1893 code based procedure for Seismic Analysis? Explain Codal coefficient method in detail.
b) Explain need of Earthquake analysis of structure and need of standard code.

OR

12. Analyse four storeyed RC building using equivalent static lateral force method confirming
to IS 1893. The preliminary data required for the analysis of frame is as follows :
13. Type of structure Multistorey rigid jointed plane frame
(special RC moment resisting frame)
14. Seismic Zone

IV (Table 2, IS 1893 (Part 1) : 2002)
3. Number of Stories

Four, $(\mathrm{G}+3)$
4. Floor height
5. Infill wall
3.5 m

250 mm thick including plaster in longitudinal and 150 mm in transverse direction.
6. Imposed load
$3.5 \mathrm{kN} / \mathrm{m}^{2}$
7. Materials

Concrete (M 20) and Reinforcement (Fe 415)
P.T.O
8. Sizes of columns
9. Sizes of beams
10. Depth of slab
11. Specific weight of RCC
12. Specific weight of infill
13. Type of soil
$250 \mathrm{~mm} \times 450 \mathrm{~mm}$
$250 \mathrm{~mm} \times 400 \mathrm{~mm}$ in longitudinal and $250 \mathrm{~mm} \times 350 \mathrm{~mm}$ in transverse direction.
100 mm thick
$25 \mathrm{kN} / \mathrm{m}^{3}$
$20 \mathrm{kN} / \mathrm{m}^{3}$
Rock

Refer fig. 6A \& 6 B.

Fig. 6 : Plan showing the column and
beams at flood levels of plane frame.

