

b) Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x^2}{(x^2 + y^2)^{3/2}}$ dy dx by changing into polar form.

c) Evaluate by changing the order of integration $\int_{0}^{\infty} \int_{x}^{0} \frac{e^{-y}}{y} dy dx$

6. a) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} xyz \, dz \, dy \, dx$

b) Find the mass of area bounded by the curves $y = x^2$ & $x = y^2$, if the density at any point is $\rho = \lambda (x^2 + y^2)$.

OR

6

6

6

6

6

6

6

6

- c) Evaluate $\iint \frac{r dr d\theta}{\sqrt{a^2 + r^2}}$ over one loop of the lemniscate $r^2 = a^2 \cos 2\theta$.
- 7. a) Show that. $\begin{pmatrix} \overrightarrow{a} \times \overrightarrow{b} \\ \overrightarrow{c} \times \overrightarrow{d} \end{pmatrix} + \begin{pmatrix} \overrightarrow{a} \times \overrightarrow{c} \\ \overrightarrow{a} \times \overrightarrow{b} \end{pmatrix} + \begin{pmatrix} \overrightarrow{a} \times \overrightarrow{c} \\ \overrightarrow{a} \times \overrightarrow{d} \end{pmatrix} + \begin{pmatrix} \overrightarrow{a} \times \overrightarrow{d} \\ \overrightarrow{a} \times \overrightarrow{d} \end{pmatrix} \times \begin{pmatrix} \overrightarrow{b} \times \overrightarrow{c} \\ \overrightarrow{b} \times \overrightarrow{c} \end{pmatrix}$ is parallel to the vector \overrightarrow{a} .
 - b) Find the directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1, 1, -1) in the direction 2i + j k. In what direction will the directional derivative be maximum and what is its magnitude?

Prove that $\overrightarrow{A} = (6xy + z^3)\overrightarrow{i} + (3x^2 - 3)\overrightarrow{j} + (3xz^2 - y)\overrightarrow{k}$ is irrotational. Find the scaler potential ϕ such that $A = \Delta \phi$.

OR

- 8. a) A particle moves so that its position rector is given by $\vec{r} = \cos\omega t i + \sin\omega t j$ where ω is constant, prove that.
 - i) Velocity \vec{v} of the particle is perpendicular to \vec{r} .
 - ii) $\vec{r} \times \vec{v} = \text{constant vector and.}$
 - iii) The acceleration \overrightarrow{a} is directed towards the origin.
 - A particle moves along the curve $\bar{r} = (t^3 4t)i + (t^2 + 4t)j + (8t^2 3t^3)k$ where t is the time. Find the magnitude of the tangential and normal component of its acceleration at t = 2.

KNT/KW/16/7202

b)

c)

Find the value of 'n' for which the vector field $r^n \overrightarrow{r}$ will be solenoidal. Find also whether the vector field $r^n \overline{r}$ is irrotational or not.

If $\overline{A} = (y-2x)i + (3x+2y)j$, find the circulation of \overline{A} about the circle C in the XY plane with Centre at origin and radius 2, C is traversed in the positive direction.

6

7

7

6

7

6

OR

10. Use Green's theorem in the plane, evaluate $\int_{C} \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$ Where C is the boundary of the region bounded by $y = \sqrt{x}$ and $y = x^2$.

1	11.	a)
15	Da	Y

9

- Fit a curve $y = ab^{x}$ to the following data. x 2 3 4 5 6 y 144 172.8 207.4 248.8 298.6
- b) Find the function whose first order forward difference is $x^3 3x^2 + 9$

OR

- **12.** a) In a partially distributed laboratory analysis of a correlation data, the following results only are eligible:
 - $\sigma_x^2 = 9$

Regression equations: 8x - 10y + 66 = 0, 40x - 18y = 214 what were.

i) The mean values of x and y.

ii) Coefficient of correlation between x and y.

- iii) Standard Deviation of y.
- b) Solve the difference equation. $y_{n+2} - 2y_{n+1} + 4y_n = 2^n$

KNT/KW/16/7202

