B.E. Second Semester (C.B.S.) / B.E. Second Semester (Fire Engineering) Applied Mathematics - II Paper - II

P. Pages : 3

KNT/KW/16/7202
Time : Three Hours

Notes: 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Use of non programmable calculator is permitted.

1. a) Evaluate $\int_{0}^{1} \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{4}}} \mathrm{dx}$
b) By differentiation under the integral sign evaluate $\int_{0}^{\infty} \frac{e^{-a x} \sin x}{x} d x$
2. a) Evaluate $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
b) A rod of length ' a ' is divided into two parts at random. Prove that the mean value of the sum of squares on these two segments is $\frac{2}{3} \mathrm{a}^{2}$.
3. a) Trace the curve $a^{2} x^{2}=y^{3}(2 a-y)$ and show that its area is equal to πa^{2}.
b) Find the perimeter of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.

OR

4. a) Find the volume of the solid obtained by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x -axis.
b) Trace the cardioid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ and find the perimeter of the cardioid.
5. a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x$ dy over the region in the positive quadrant for which $x+y \leq 1$.
b) Evaluate $\int_{0}^{a} \int_{0}^{a} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y d x$ by changing into polar form.
c) Evaluate by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$

OR

6. a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x y z d z d y d x$
b) Find the mass of area bounded by the curves $y=x^{2} \& x=y^{2}$, if the density at any point is $\rho=\lambda\left(x^{2}+y^{2}\right)$.
c) Evaluate $\iint \frac{\mathrm{rdrd} \theta}{\sqrt{\mathrm{a}^{2}+\mathrm{r}^{2}}}$ over one loop of the lemniscate $\mathrm{r}^{2}=\mathrm{a}^{2} \cos 2 \theta$.
7. a) Show that.
b) Find the directional derivative of $\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ in the direction $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$. In what direction will the directional derivative be maximum and what is its magnitude?
c) Prove that $\vec{A}=\left(6 x y+z^{3}\right) \vec{i}+\left(3 x^{2}-3\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ is irrotational. Find the scaler potential ϕ such that $\mathrm{A}=\Delta \phi$.

OR

8. a) A particle moves so that its position rector is given by $\vec{r}=\cos \omega t i+\sin \omega t j$ where ω is constant, prove that.
i) Velocity \vec{v} of the particle is perpendicular to \vec{r}.
ii) $\quad \vec{r} \times \vec{v}=$ constant vector and.
iii) The acceleration $\overrightarrow{\mathrm{a}}$ is directed towards the origin.
b) A particle moves along the curve $\overline{\mathrm{r}}=\left(\mathrm{t}^{3}-4 \mathrm{t}\right) \mathrm{i}+\left(\mathrm{t}^{2}+4 \mathrm{t}\right) \mathrm{j}+\left(8 \mathrm{t}^{2}-3 \mathrm{t}^{3}\right) \mathrm{k}$ where t is the time. Find the magnitude of the tangential and normal component of its acceleration at $t=2$.
c) Find the value of ' n ' for which the vector field r n \vec{r} will be solenoidal. Find also whether the vector field $\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}$ is irrotational or not.
9.

If $\bar{A}=(y-2 x) i+(3 x+2 y) j$, find the circulation of \vec{A} about the circle C in the XY plane with Centre at origin and radius $2, \mathrm{C}$ is traversed in the positive direction.

OR

10. Use Green's theorem in the plane, evaluate $\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ Where C is the boundary of the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.
11. a) Fit a curve $y=a b^{x}$ to the following data.

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.6

b) Find the function whose first order forward difference is $x^{3}-3 x^{2}+9$.

OR

12. a) In a partially distributed laboratory analysis of a correlation data, the following results only are eligible:
$\sigma_{\mathrm{x}}{ }^{2}=9$
Regression equations: $8 \mathrm{x}-10 \mathrm{y}+66=0,40 \mathrm{x}-18 \mathrm{y}=214$ what were.
i) The mean values of x and y.
ii) Coefficient of correlation between x and y.
iii) Standard Deviation of y.
b) Solve the difference equation.
$y_{n+2}-2 y_{n+1}+4 y_{n}=2^{n}$

$$
058
$$

