B.E. (Electrical Engineering (Electronics & Power) Eighth Semester (C.B.S.)

Computer Applications in Power System Paper - I Elective - III

P. Pages: 3

TKN/KS/16/7665

Time: Three Hours

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Due credit will be given to neatness and adequate dimensions.
 - 7. Assume suitable data wherever necessary.
 - 8. Illustrate your answers wherever necessary with the help of neat sketches.
 - 9. Use of non programmable calculator is permitted.
- **1.** a) For a oriented graph shown in Fig. 1 (a) obtain :
 - i) Bus impedance matrix [A]
 - ii) Branch path incidence matrix [K]
 - iii) Augmented cut set incidence matrix [B].
 - iv) Augmented loop incidence matrix $[\hat{C}]$.

- b) Explain in brief the following terms:
 - i) Network graph.

- ii) Tree of a graph.
- iii) Primitive network.
- iv) Basic cut set.

OR

2. a) Derive the equation of loop impedance matrix $[Z_{loop}]$ using singular transformation.

6

12

10

6

- 3. a) Derive the equation useful for formation of Z_{Bus} when added element is a link, start from performance equation of a partial network.
 - b) The bus impedance matrix Z_{Bus} for the sample power system is given below. Modify the bus impedance matrix.
 - i) If include the addition of an element from bus '2' to bus '3' with an impedance of 0.4pu.
 - ii) If include the addition of an element from bus '4' to bus '2' with an impedance of 0.5pu in given matrix.

		2	3	4
	2	0.271	0.126	0.329
$Z_{Bus}=$	3	0.126	0.443	0.188
	4	0.329	0.188	0.380

OR

- **4.** a) Explain the formation of Y_{Bus} by direct inspection method with suitable example.
 - b) Obtain Z_{Bus} using building algorithm method for power system shown in Fig. 4 (b).

- 5. a) Derive an expression for performance equation of 3-phase stationary element in admittance 10 form when excitation is balanced.
 - b) How 3-φ network component is represented in impedance and admittance form? Write 10 down the performance equation of the 3-phase element in both these form.

- 6. Consider a 3-phase to ground fault on bus no. 2 of the power system shown in Fig. (6) carry out short circuit analysis to find.
 - i) Total fault current
 - ii) Voltage of each bus during fault
 - iii) Current through the phase 'C' of the transformer element.

Fig. (6)

- 7. a) Compare the performance of Gauss-Seidal & Newton Raphson methods for load flow solution.
 - 5

8

- b) Derive the equation used to calculate real & reactive bus powers for load flow solution by using the Newton Raphson Method with Y_{Bus} .

c) Draw the flowchart of Gauss Seidal iterative method.

7

OR

8. A 20MVA 50C/s generator circuit delivers 18MW over a double circuit line to an infinite bus. The generator bus Kinetic energy is 2.52MJ/MVA at rated speed. The generator transient reactance is $X_d^1 = 0.35$ pu . Each transmission circuit reactance is 0.2pu on 20MVA base. Initially the generator bus voltage was 1.1pu & infinite bus voltage 1.0pu. A 3-phase short circuit occurs at the mid point of one of the transmission lines at t = 0 and it is cleared in 0.05 sec. Find the swing of the rotor upto 0.15. Taking time step of 0.05 sec. Use modified Euler's Method.

www.solveout.in