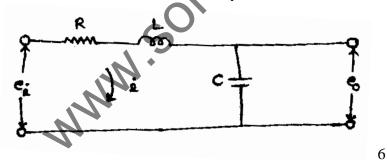
NTK/KW/15-7366


Fourth Semester B.E. (Electrical Engineering) (C.B.S.) Examination

APPLIED MATHEMATICS – IV

Time : Three Hours]

[Max. Marks : 80

- N. B. : (1) All questions carry marks as indicated.
 - (2) Assume suitable data wherever necessary.
 - (3) Use of non programmable calculator is permitted.
 - (4) Solve six questions as follows . Q. 1 or Q.
 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q.
 8, Q. 9 or Q. 10, Q. 11 or Q. 12.
- 1. (a) Define Transfer function Obtain the mathematical model of the system given below. Also find transfer function of the system.

(b) Define :---

(i) Step signal

- (ii) Ramp Signal
- (iii) Parabolic signal and also find their Laplace Transform.

NTK/KW/15 - 7366

OR

- 2. (a) Discuss the time response of a second order system for a unit step input. 6
 - (b) Obtain unit step response of unity feedback system whose open loop transfer function is

$$G(S) = \frac{4}{S(S+5)}$$
 6

3. (a) If
$$Z \{f(n)\} = F(z)$$
, show that

$$Z \left\{ \frac{f(n)}{n+k} \right\} = z^{K} \int_{z}^{\infty} \frac{F(z)}{Z^{K+1}} d_{z}$$
Hence find $Z \left\{ \frac{1}{n+1} \right\}$
(b) Find Z-transform of (a) n and (b) n^{2} .

4. (a) State convolution theorem and use it to find

$$z^{-1} \left\{ \frac{Z^2}{(z-a)(z-b)} \right\}.$$
(b) Solve $y_{n+2}+5y_{n+1}+6y_n=6^n$, given $y_0=0, y_1=1$
by Z-transform. 6

5. (a) Define

- (i) Fuzzy set
- (ii) Normalized fuzzy set
- (iii) αcut
- (iv) Support of fuzzy set. 6

2

NTK/KW/15-7366

(b) Let U = { a, b, c, d } be the domain and A and B be fuzzy sets on U as given below :

		00 10	22, 0	000		··· 5·	en o	•10	•	
				a		b	c		d]
			Α	0.5	;	0.8	0.	0	0.3	1
			В	0.2	2	1.0	0.	1	0.7	1
	Find :									
(i) $A \cup B$										
(ii) A∩B										
(ii) A'										
(iv) B'.										
		` ´		41 4	() (A 1				(
		Also	prove	that	(v) (AUI	3); =	A	́ПВ'.	6
					OR		\mathbf{O}	_		
_			т <i>с</i> т	7 (. ((1	2 2 1	T 1
5.	(a)			$X = \{a$		} an	d Y =	= { 1 ,	$\{2,3\}.$	The
 6. (a) (i) Let X = { a, b, c } and Y = { 1, 2, 3 }. The fuzzy sets A and B are defined on X and Y respectively as follows : 										
		0.0		specif		15 101	10 w S	.—		07
$A = \left\{ \frac{0.2}{a}, \frac{0.3}{b}, \frac{0.5}{c} \right\}, B = \left\{ \frac{0.5}{1}, \frac{0.6}{2}, \frac{0.7}{3} \right\}$										
							l 1		2	3 J
			Find	Αx	B.					
		(ii)	If							
		\mathbf{N}								
R	У ₁	У ₂	У ₃	У4		S	У ₁	У ₂	y ₃	У ₄
X ₁	0.3	0.2	1	0		X ₁	0.3	0	0.7	0
x ₂	0.8	1	0	0.2	and	X ₂	0.1	0.8	1	1
x ₃	0.5	0.4	0.4	0		x ₃	0.6	0.9	0.3	0.1
		Find	G) R	¢	(ii)	R	∩ ¢	· '	,
		1,1110	(1) K	03	(11)	ĸ	113	2 +	4 = 6
									<i>∠</i> ⊤	т — 0

NTK/KW/15-7366

6.

3

(b) Let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3, y_4, y_5\}$ and $Z = \{z_1, z_2, z_3, z_4\}$. The fuzzy relations R and S are defined as follows :---

R	У ₁	У ₂	У ₃	У4	У ₅
x ₁	0.1	0.2	0	0.7	0
X2	0.3	0.5	0	0.2	1
x ₃	0.8	0	1	0.4	0.3

	S	Z ₁	Z ₂	Z3	Z4		
	У ₁	0.9	0	0.3	0.4		
and	У ₂	0.2	1	0.8	0		
	У ₃	0.8	0	0.7	1		
1	У ₄	0.4	0.2	0.3	0		
	У ₅	0	• 1	0	0.8		
X							

Find ROS.

- 7. (a) Find a real root of the equation $x^4 11x + 8 = 0$ accurate to four decimal places by the method of false position. 6
 - (b) Solve 10x + y + z = 12 2x + 10y + z = 13 2x + 2y + 10z = 14 by Crout's method. 6 OR
- 8. (a) Find by Newton Raphson method, the root of the equation $\cos x = xe^{X}$. 6
 - (b) Solve 20x + y 2z = 17 3x + 20y - z = -18 2x - 3y + 20z = 25 by Gauss Siedal method. 6

4

NTK/KW/15-7366

- 9. (a) Solve $\frac{dy}{dx} = 2y + 3e^{X}$, y (0) = 0 by Taylor's series method. Find y (0.1) and y (0.2). Compare the values with exact solution. 7
 - (b) Given

$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2-y^2}{4x} \text{and} $							
x	4	4.1	4.2	4.3			
У	1	1.0049	1.0097	1.0144			

Find y (4.4) and y (4.5) using Milen's Predictor Corrector Method. 7

OR

10. (a) Given that

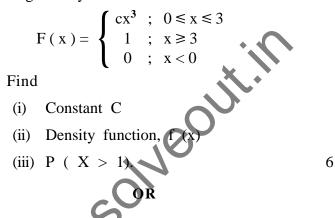
$$\frac{dy}{dx} = 2 + \sqrt{xy}$$
 and $y = 1$ when $x = 1$

Find approximate value of y at x = 1.6 with h = 0.2 using Euler's modified method. 7

(b) Using Runge – Kutta method of order four, compute y (0.3) from

10
$$\frac{dy}{dx} = x^2 + y^2$$
, y (0) = 1. where h = 0.3 7

11. (a) Urn A contains 1 white, 2 black, 3 red marbles. Urn B contains 2 white, 1 black, 1 red marbles. Urn C contains 4 white, 5 black, 3 red marbles. One Urn is choosen at random and two marbles are drawn. If one is white and other is red, then


NTK/KW/15–7366 5 Contd.

what is the probability that they come from urn A? 6

(b) Find the expectation of a discrete random variable, whose probability function is given by

$$f(x) = \left(\frac{1}{2}\right)^{x}, x = 1, 2, 3, \dots$$
 6

(c) The distribution function of a random variable X is given by

12. (a) Find the moment generating function of a random variable X having density function

$$f(x) = \begin{cases} \frac{x}{2}, 0 \le x \le 2\\ 0, \text{ otherwise} \end{cases}$$

Hence find first four moments about the origin. 6

- (b) If 10% of bolts produced by a machine are defective. Determine the probability that out of 10 bolts chosen at random
 - (i) one
 - (ii) none
 - (iii) at most '2' bolts will be defective. 6

6

NTK/KW/15-7366

- (c) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find.
 - (i) How many score between 12 and 15 ?
 - (ii) How many score above 18 ?
 - (iii) How many score below 8 ? 6

3100