NTK/KW/15/7287

Faculty of Engineering & Technology

First Semester B.E. (C.B.S.) Examination

BASIC ELECTRICAL ENGINEERING

Time : Two Hours] [Maximum Marks : 40

INSTRUCTIONS TO CANDIDATES

(1) All questions carry marks as indicated.

(2) Assume suitable data wherever necessary.

- (3) Illustrate your answers wherever necessary with the help of neat sketches.
- (3) Use of non-programmable calculator is permitted.
- (a) Using Source Transformation, convert the circuit given below to a single voltage source in series with a resistor. Refer Fig. 1(a).

1

MVM-47050

1.

MMM.SOWE

(Contd.)

(b) Using Superposition principle, find current (I) through 3Ω resistor. Refer Fig. 1(b). 6

Fig. 1(b)

OR

2. (a) Find the value of Resistance 'R' shown in Fig. 2(a) when power consumed by the 12 Ω resistor in the given circuit is 36 watts. 4

Fig. 2(a)

(b) For the circuit in Fig. 2(b), using STAR-DELTA transformation, find source current (I_c) . 6

Fig. 2(b)

- 3. (a) Define and explain with neat sketch :
 - (i) Fringing
 - (ii) Useful flux
 - (iii) Leakage flux. 3
 - (b) An iron ring of mean length of 600 mm and having a cross-sectional area of 4 cm² is required to produce a flux of 0.44 m.wb. Find the mmf to be provided by the coil wound on the ring.

If a saw cut of 1 mm wide is made in the

MVM—47050	2	(Contd.)	MVM—47050	3	(Contd.)

ring, how much extra mmf is required to maintain the same flux ? The points on $B-\mu_r$ curve are :

$B(wb/m^2)$	m r	
0.8	2300	
0.9	2150	
1.0	2000	5.
1.1	1815	5.
1.2	1630	
1.3	1365	0
1.4	1100	120
		7
OR		N.S

OR

(a) Draw complete hysteresis loop and explain : 4.

- (i) Remanent flux density
- (ii) Residual flux
- (iii) Retentivity and
- (iv) Coercive force.

4

MVM-47050

(Contd.)

5

MVM-47050

- (Contd.)

- (b) A circular iron ring of mean circumference of 25 cm and cross-sectional area of 5 cm² has a radial saw cut of 1 mm in it. The ring is uniformly wound with a coil of 500 turns and current of 2 A in the coil produces a flux of 0.5×10^{-3} wb in the ring. Calculate the relative permeability of iron at this flux density. 5
- Determine the RMS value of sine wave rectifier 5. (a) 3 output.
 - A voltage of 200 $\angle 25^{\circ}$ volt is applied to a circuit composed of 2 parallel branches, if the branch currents are $10 \angle 45^{\circ}$ A and $20 \angle -30^{\circ}$ A, determine the KVA, KVAR and kW in each branch. Also calculate the P.F. of the combined load. 7

OR

- (a) Derive the relationship between 'Power in 6. Delta (P_{D}) and Power in Star (P_{S}) '. 4
 - (b) A balanced star connected load is supplied from a symmetrical 3¢, 410 V system. The current in each phase is 30 Amps and lags 30° behind the phase voltage. Find :

5

(i) R_{p}

- (ii) X_p
- (iii) Z_p
- (iv) kW
- (v) KVAR and
- (vi) KVA. 6
- 7. (a) What are the losses in the transformer ? Explain why the rating of transformer is in KVA. 4
 - (b) A 100 KVA, 1 KV/10KV, 50 Hz, 1-phase transformer has iron losses of 1100 watts and the copper loss with 5 A in high voltage winding is 400 watts. Calculate the efficiency at 25% of full load at (i) UPF and (ii) 0.8 pF lag, the output being maintained at 10,000 V.

OR

8. (a) A 15 KVA, 2200/110 V transformer has $R_1 = 1.75 \Omega$, $R_2 = 0.0045 \Omega$. The leakage reactances are $X_1 = 2.6 \Omega$ and $X_2 = 0.0075 \Omega$. Calculate :

6

- (i) Equivalent resistance referred to primary and secondary.
- MVM—47050

(Contd.)

Sheontry

7

- (ii) Equivalent reactance referred to primary and secondary.
- (iii) Total copper losses. 6
- (b) Explain 'SHORT CIRCUIT TEST' on a single phase transformer with the help of neat sketch. 4