(b)	Write short notes on the following (any two):
	(i) Cement moduli
	(ii) Cement additives
	(iii) Fly ash as a cementing material. 6
	OR
(a)	Draw a labelled diagram of rotary kiln. Describe
	the process of manufacture of portland cement
	by wet process. State the various thermochemical
	changes occur during the process. 6
(b)	Attempt any two of the following:
	(i) Rapid hardening cement
	(ii) High alumina cement
	(iii) Soundness of cement
	(iv) Ready mix concrete. 4
(a)	Give the significance of green chemistry. State
	the basic principles of green chemistry. 3
(b)	1 2
	3
(c)	Define energy density and power density. 2
	OR
(a)	Discuss construction, working and application of
	Ni-Cd battery. 4
(b)	Write notes on (any two):
	(i) Carbon credit
	(ii) Biocatalysis
	· /

4

15100

(iii) Primary battery.

6.

7.

8.

MVM-47049

Faculty of Engineering & Technology First Semester B.E. (C.B.S.) Examination ENGINEERING CHEMISTRY

Time: Two Hours] [Maximum Marks: 40
INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Solve FOUR questions as follows:

 Question No. 1 OR Question No. 2

 Question No. 3 OR Question No. 4

 Question No. 5 OR Question No. 6

 Question No. 7 OR Question No. 8
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Discuss the reaction, mechanism wherever necessary.
- (8) Use of non-programmable calculator is permitted.

MVM—47049 1 (Contd.)

1. (a) Water contains following impurities in ppm:

$$Ca(HCO_3)_2 = 75$$
, $MgSO_4 = 30$, $CaCl_2 = 95$, $Mg(HCO_3)_2 = 73$, Dissolved $CO_2 = 20$.

Calculate the amount of lime (85% pure) and soda (95% pure) require for the softening of 2,50,000 litres of water using sodium aluminate as a coagulant at the rate of 16.4 ppm. 8

(b) Explain desalination by Electro-dialysis process.

4

OR

- 2. (a) A zeolite softener was completely exhausted by passing 20,000 litres of water sample through it. If the zeolite requires 150 litres of 5.5% NaCl solution for complete regeneration, calculate the hardness of the water sample.
 - (b) Write notes on (any three):
 - (i) Break point chlorination and its significance.
 - (ii) Tertiary treatment of waste water to reduce water pollution.
 - (iii) Causes and disadvantages of scale formation in boiler.
 - (iv) Carbonate and phosphate conditioning. 9

- 3. (a) How corrosion can be prevented with proper material selection and design?
 - (b) Explain the following (any two):
 - (i) Cathodic protection by impressed current method.
 - (ii) How rate of corrosion is depend upon nature of environment ?
 - (iii) Pilling-Bedworth Rule.

OR

4. (a) Discuss the mechanism of electrochemical corrosion by O₂ absorption and H₂ liberation.

4

6

- (b) Explain why (any three):
 - (i) Anodic area should be larger than cathodic area.
 - (ii) Copper equipment should not possess a small steel bolt.
 - (iii) Pitting corrosion is auto-catalytic and self stimulating.
 - (iv) A pure metal rod, half immersed vertically in water starts corroding at the bottom.

6

5. (a) How does ordinary portland cement set-in and harden on mixing with water? Justify the answer with chemical equations.

MVM—47049 3 (Contd.)

MVM—47049 2 (Contd.)