NTK/KW/15 –7327

Third Semester B. E. (Computer Science Engg.) (CSE) (CBS) Examination DIGITAL CIRCUITS AND FUNDAMENTAL OF MICROPROCESSOR

Time : Three Hours]

[Max. Marks : 80

- N. B. : (1) All questions carry marks as indicated. (2) Assume suitable data wherever necessary.
 - (3) Illustrate your answers wherever necessary with the help of neat sketches.

1. (a) State and prove the De-Morgan's theorem. 4

(b) Simplify the following function using k-map and realize using NOR gates.

$$f(P, Q, R, S) = \sum m(0, 1, 3, 8, 10, 13, 14) + d(9, 16, 17, 24, 31)$$

 $f(A, B, C, D) = \pi M (0, 1, 3, 8, 9, 17, 19, 24)$ + d(13, 14, 16, 31). 10

OR

- 2. (a) Perform the following operations :--
 - (i) $(A12C)_{H} \rightarrow (\)_{8}$ (ii) $(146.24)_{D} \rightarrow (\)_{B}$ (iii) $(11010110111010)_{B} \rightarrow (\)_{H}$ (iv) $(10110110101)_{B} \rightarrow (\)_{G}$ (v) $(179 \ A)_{H} \rightarrow (\)_{BCD}$. 10

NTK/KW/15-7327

Contd.

(b) Simplify the following function using Boolean algebra and implement by using gates.

$$f(w, x, y, z) = \overline{w}yz + x\overline{y}\overline{z} + \overline{xyz} + w \overline{x}y\overline{z}$$

$$4$$

- 3. (a) Design 4 bit carry look ahead adder and explain. Also give its advantages and disadvantages. 7
 - (b) Design the full Adder with half adders and explain in detail. 6

OR

- 4. (a) Design a BCD to Excess-3 code converter circuit and explain it. 7
 - (b) Implement the following using 3:8 decoder circuit.
 - (i) $f_1(A, B, C) = \sum m(0, 3, 2, 4)$
 - (ii) $f_2(A, B, C) = \pi M (1, 2, 5, 6).$ 6
- 5. (a) Draw and explain J–K flip flop using NAND gates. 6
 - (b) What is race around condition ? How is race around condition eliminated by using Master slave JK flip-flop ? 5
 - (c) What do you mean by sequential circuits. 3

OR

6. (a) Write a note on triggering methods for flip-flops. 4

NTK/KW/15–7327 2

Contd.

- (b) Explain how latch can be used as one bit memory cell. 3
- (c) Design the T and D flip flop using NAND gates and explain. 7
- 7. (a) Write short notes on :---
 - (i) Shift Registers.
 - (ii) Synchronous and asynchronous counter.

6

(b) Design a synchronous 3-bit gray code up-counter using J-K flip-flop.7

OR

8. (a) Convert the following : (i) J–K flip flop to T flip flop. (ii) T flip flop to D flip flop. 8 (b) Draw and explain 3-bit ripple counter using T-5 flip flop. (a) Explain the following in detail :---9. ROM (i) (ii) PLA (iii) PAL. 9 (b) Explain the operation of following instructions :---(i) LHLD 1100H; (ii) MOV A, M; (iii) STA 2000H; (iv) POP RP, 4 NTK/KW/15-7327 3 Contd.

OR

10.	(a)	Draw and explain the architecture of micro- processor 8085. 8
	(b)	Implement the following function using PAL:
		$f(A B C) = \sum m (3, 5, 6, 7)$ 5
11.	(a)	Explain the hardware interrupt structure of µp 8085 in detail. 7
	(b)	Draw the timing diagram for the instruction "MOV M, A". 6
OR		
12.	(a)	Write a program to find the greatest number in the block of 10 bytes which are present in

12. (a) Write a program to find the greatest number in the block of 10 bytes which are present in memory location from address 7000H. Store the greatest number at location 8000H. 7

•

(b) Explain the following instructions of μp 8085.

6

3250