Faculty of Engineering \& Technology
Third Semester B.E. (Computer Technology)/C.S.E. (C.B.S.) Examination APPLIED MATHEMATICS-III

INSTRUCTIONS TO CANDIDATES
All questions are compulsory.
(2) Assume suitable data wherever necessary.
(3) Solve SIX questions as follows :

Question No. 1 OR Question No. 2
Question No. 3 OR Question No. 4
Question No. 5 OR Question No. 6
Question No. 7 OR Question No. 8
Question No. 9 OR Question No. 10
Question No. 11 OR Question No. 12.
(4) Use of non-programmable Calculator is permitted.

1. (a) If $L[f(t)]=F(s)$, then show that $L\left[\frac{1}{t} f(t)\right]=\int_{s}^{\infty} F(s) d s$. Hence find $L\left[\frac{1-\cos t}{t}\right]$.

6
(b) Find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}^{2}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right]$

OR

2. (a) Find the Laplace transform of the function $f(t)$ given by

$$
\mathrm{f}(\mathrm{t})= \begin{cases}\sin \mathrm{wt} & 0<\mathrm{t}<\mathrm{p} / \mathrm{w} \\ 0 & \frac{\mathrm{p}}{\mathrm{w}}<\mathrm{t}<2 \mathrm{p} / \mathrm{w}\end{cases}
$$

where $f\left(t+\frac{2 p}{w}\right)=f(t)$.
(b) A particle moves in a line so that its displacement from a fixed point O at any time t , is given by :

$$
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+4 \frac{\mathrm{dx}}{\mathrm{dt}}+5 \mathrm{x}=80 \sin 5 \mathrm{t}
$$

Using Laplace transform, find its displacement at any time t if x and x^{\prime} vanish at $\mathrm{t}=$
3. (a) Find a Fourier series to represent $\left(x-x^{2}\right)$ from $x=$ $-\pi$ to π and hence show that:

$$
\begin{equation*}
\frac{\mathrm{p}^{2}}{1^{2}}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \tag{6}
\end{equation*}
$$

(b) Find Fourier transform of e^{ax}, where $\mathrm{a}>0$.

6

OR

4. (a) Obtain half range cosine series for $f(x)$, $x)=2 x-1 ; 0<x<1$. Hence show that :

$$
\begin{equation*}
\frac{\mathrm{p}^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \tag{6}
\end{equation*}
$$

(b) Find Fourier transform of $f(x)$, where

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}
1-|\mathrm{x}| & \text { if }|\mathrm{x}|<1 \\
0 & \text { if }|\mathrm{x}|>1
\end{array}\right. \text { and }
$$

hence find the value of $\int_{0}^{\infty} \frac{\sin t}{t} d t$.
6
5. (a) If $\mathrm{Z}[\mathrm{f}(\mathrm{n})]=\mathrm{F}(\mathrm{z})$, then show that $\mathrm{Z}[\mathrm{n} . \mathrm{f}(\mathrm{n})]=$ $-\mathrm{z} \frac{\mathrm{d}}{\mathrm{dz}} \mathrm{F}(\mathrm{z})$. Hence show that $\mathrm{Z}\left\{\mathrm{n}^{2}\right\}=\frac{\mathrm{z}(\mathrm{z}+1)}{(\mathrm{z}-1)^{3}}$.
(b) Solve by using Z-transform :

$$
y_{n+2}+5 y_{n+1}+6 y_{n}=6^{n}, y_{0}=0, y_{1}=1 . \quad 6
$$

OR
6. (a) Find $Z^{-1}\left[\frac{a z(z+a)}{(z-a)^{3}}\right]$.
(b) Find $\mathrm{Z}\left[9^{n} \cdot \cos \mathrm{n} \theta\right]$.
7. (a) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is a harmonic function. Hence construct analytic function $f(z)$.

7
(b) Evaluate $\oint_{C} \frac{z+4}{z^{2}+2 z+5} d z$, where C is the circle $|z+1|=1$.

OR

8. (a) Expand the function $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in the regions (i) $|\mathrm{z}|<2$ (ii) $2<|\mathrm{z}|<3$ by Laurent's 6
series.
(b) Evaluate $\int_{0}^{\mathrm{p}} \frac{1}{3+2 \cos ?} \mathrm{~d} \theta$, by contour integration.
(c) Solve $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}-3 \frac{\mathrm{dy}}{\mathrm{dt}}-10 \mathrm{y}=0$ given $\mathrm{y}(0)=3$, $y^{\prime}(0)=15$ by matrix method. 6
9. (a) A random variable X has the following probability distribution :

X	$f(x)$
0	a
1	$3 a$
2	$5 a$
3	$7 a$
4	$9 a$
5	$11 a$
6	$13 a$
7	$15 a$
8	$17 a$

(i) Determine the value of a
(ii) $\mathrm{P}(\mathrm{x} \leq 4)$
(iii) $\mathrm{P}(\mathrm{x}>5)$
(iv) Distribution function.
(b) In a bolt factory, machines A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the total. Of their output $5 \%, 4 \%$ and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective, what is the probability that it was manufactured by machine B ? 6

OR
12. (a) Find moment generating function and first four moment about origin of random variable x , whose density function is given by :

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & a<x<b \tag{6}\\
0 & \text { otherwise }
\end{array}\right.
$$

(b) The mean grade on a final examination was 72 and the standard deviation was 9 . The top 10% of the students are to receive ' A ' grade. What is the minimum grade a student must get in order to receive an A ?

