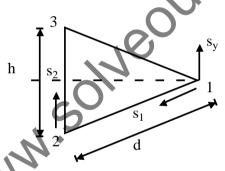

B.E. (Aeronautical Engineering) Fifth Semester (C.B.S.) Aircraft Structure – II Paper – IV


P. Pages : 4 Time : Three	e Hours	TKN/KS/16/ Max. Mark	
Notes : 1.		All questions carry marks as indicated.	
	2.	Solve Question 1 OR Questions No. 2.	
	3.	Solve Question 3 OR Questions No. 4.	
	4.	Solve Question 5 OR Questions No. 6.	
	5.	Solve Question 7 OR Questions No. 8.	
	6.	Solve Question 9 OR Questions No. 10.	
	7.	Solve Question 11 OR Questions No. 12.	
	8.	Due credit will be given to neatness and adequate dimensions.	
	9.	Assume suitable data whenever necessary.	
	10.	Diagrams and Chemical equations should be given whenever necessary.	
	11.	Illustrate your answers whenever necessary with the help of neat sketches.	
	12.	Use of non programmable calculator is permitted.	
f b) S c) F	for the p State an	the equation of bending stresses due to unsymmetric bending, derive the equation position of neutral axis. ad explain, parallel and perpendicular axis theorems. $_x$ and I_{yy} , for a rectangle having breadth 'b' and depth 'd'. OR	5 5 3
		ine the direct stress distribution in the thin walled z-section. shown below, due to bending moment Mx. $2 \xrightarrow{f_{1}}{h/2} \xrightarrow{f_{1}}{h}$	13

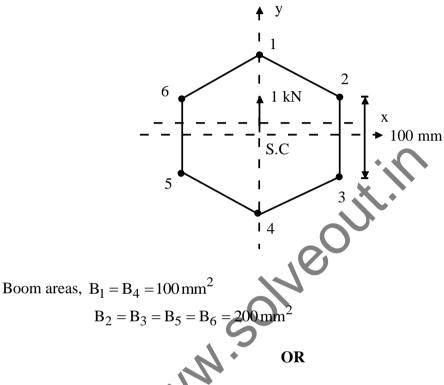
 $\frac{h/2}{4}$

A beam has the singly symmetrical thin walled c/s shown in fig. Each wall of the section is flat and has same length 'a' and thickness 't'. Calculate the distance of shear centre from point 3.

A uniform Hain – walled beam of constant wall thickness 't' has a c/s in the shape of an isosceles triangle and is loaded with a vertical shear force sy applied at the apex. Calculate the distribution of shear flow over the c/s.

- 5. a) Explain the theory of torsion for closed section beams. Derive the necessary formulas.7 What it is called?
 - b) Find the angle of twist per unit length in the wing whose cross section is shown in the fig. when it is subjected to a torque of 10 kN/m. Find also the maximum shear stress in the section $G = 25000 \text{ N/mm}^2$ Wall 12 (outer) = 900 mm Nose cell area = 20000 mm²

7


2 mm 3 mm

6. A thin walled circular section beam has a diameter of 200mm and is $2m \log_3$, it is firmly 14 restrained against rotation at each end. A concentrated torque of 30 kN/m is applied to the beam at its mid-span point. If the maximum shear stress in the beam is limited to 200 N/mm^2 and the maximum angle of twist to 2° , Calculate the minimum thickness of beam walls.

Take : $G = 25000 \text{ N/mm}^2$

7. The regular hexagonal idealised section is as shown below. All sides of the section are of 100mm length while it has a constant thickness of 1mm. The shear modulus 'G' is same for all walls. Calculate the shear flow distribution in the section due to a vertical shear load of 1KN through its shear centre.

Find the shear flow distribution in the square – idealized section shown below due to a combination of shear load of 100 kN and torque of 100 kN/m.

Shear modulus for all walls is constant and thickness is constant.

TKN/KS/16/7461

8.

3

9. Prove that, the critical buckling load Nx, Cr for a thin rectangular simply supported plate is 13 given by

Nx, CR =
$$\frac{K\pi^2 D}{b^2}$$

OR

- 10. a)Explain in detail, the elastic and in-elastic buckling of plates.6
 - b) What do you mean by tension field beams? Explain in detail.
- 11. Find the shear flow distribution in the 2 square celled doubly symmetric idealized section 14 of all walls 100 mm length, due to a clockwise torque of 100 kN/m. All beams have same cross sectional area of 100 mm². All walls have same thickness of 2 mm. Assume, shear modulus of all walls to be same.

OR

- **12.** Explain the following cases in detail for idealized sections.
 - a) Fuselage under the application of torque.
 - b) Multicell wings under the application of shear load.

Explain the above with equations & examples.

7