B.E. (Aeronautical Engineering) Fifth Semester (C.B.S.) Aircraft Flight Mechanics Paper – II

P. Pages : 2

Time : Three Hours

* 0 8 6 8 *

TKN/KS/16/7459

Max. Marks : 80

	Note	s: 1.	All questions carry marks as indicated.	
		2.	Solve Question 1 OR Questions No. 2.	
		3.	Solve Question 3 OR Questions No. 4.	
		4.	Solve Question 5 OR Questions No. 6.	
		5.	Solve Question 7 OR Questions No. 8.	
		6.	Solve Question 9 OR Questions No. 10.	
		7.	Solve Question 11 OR Questions No. 12.	
		8.	Due credit will be given to neatness and adequate dimensions.	
		9.	Assume suitable data whenever necessary.	
		10.	Illustrate your answers whenever necessary with the help of neat sketches.	
		11.	Use of non programmable calculator is permitted.	
		12.	Use of the standard altitude tables is allowed.	
1.	a)	The pres	ssure difference ΔP in a pipe of diameter D and Length ℓ due to turbulent flow	8
	<i>a)</i>	-		0
		-	on the Velocity V. Viscosity μ , Density ρ , and roughness K. Using Buckingham's	
		Pi theore	em, obtain an expression for ΔP .	
	b)	Calculat	e pressure and temperature at an altitude of 18 km in ISA.	5
	0)	Culculut		J
			OR	
2.	a)	State Bu	ickingham's Pi theorem.	3
			5	
	b)	Derive a	in expression for variation of pressure and density ratios in troposphere region.	7
	``	11/1 OF		•
	c)	Why SF	C varies with velocity and altitude?	3
3.	a)	Derive t	he expression for drag polar and explain with a neat plot.	6
5.	<i>a)</i>	Derive u	ne expression for drag polar and explain with a near plot.	U
	b)	Fxnlain	the variation of thrust required w.r.t. velocity. Hence explain concept of "velocity	7
	0)	stability		'
		stubility		
			OR	
4.	a)	Derive a	in expression for the forces and moments acting on flight vehicle with suitable	6
	,	diagram	•••	
		U		
	b)	Draw an	d explain power available and power required curves for both propeller driven	7
	,		lriven airplane.	
5.	a)		he condition for minimum thrust required and power required in steady state level	10
		flight.		
		-		-
	b)	Define a	bsolute and service ceiling.	3

5
the 8 FC
ing 8
6
10
4
4
4
6
8
6
13 the lift ine
e I

OR

12.	a)	Obtain an expression for the elevator angle to trim the aircraft.	7
	b)	Explain how to obtain stick – free neutral point using flight test data.	6
