B.E. Second Semester Fire Engineering (C.B.S.) Applied Mathematics - II Paper - I

	ages : ie : Th	3 ree Hours $\lim_{x \to 0} \lim_{x \to 8} \lim_$	TKN/KS/16/7290 Max. Marks : 80
	Not	 es: 1. All questions carry marks as indicated. 2. Solve Question 1 OR Questions No. 2. 3. Solve Question 3 OR Questions No. 4. 4. Solve Question 5 OR Questions No. 6. 5. Solve Question 7 OR Questions No. 8. 6. Solve Question 9 OR Questions No. 10. 7. Solve Question 11 OR Questions No. 12. 8. Use of non programmable calculator is permitted. 	
1.	a)	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta$	6
	b)	Evaluate $\int_{0}^{\infty} e^{-x^{2}} \cos \alpha x dx$ by using the concept of differentiation under integral sign. Given $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$ OR	6
2.	a)	Prove that $\int_{0}^{1} x^{n-1} \left[\log(1/x) \right]^{m-1} dx = \frac{m}{n^{m}}.$	6
	b)	Find the root mean square value of (a sin $pt + b cos pt$) over the inte	erval 0 to 2π . 6
3.	a)	Trace the curve $y^2 = x^2 - x^4$.	6
	b)	Find the area lying between the parabola $y = 4x - x^2$ and the line y	= x. 6
		OR	
4.	a)	Find the volume of the solid generated by the rotation of the loop of $y^2 = x^2 + x^3$ about the x-axis.	f the curve 6
	b)	Find the length of the curve $x = a \cos^3 t$, $y = a \sin^3 t$.	6

5.

a) Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy by changing it into polar coordinates. 6$

b) Evaluate following integral by changing the order of integration $\int_{0}^{4a} \int_{x^{2}/4a}^{2\sqrt{ax}} dy dx$. 6

c) Evaluate $\iint y \, dx \, dy$, over the area bounded by $y = x^2$ and x + y = 2. 6

OR

- 6. a) Evaluate $\iint \mathbf{r} \, d\mathbf{r} \, d\theta$, over the area of the curve $\mathbf{r} = a(1 + \cos\theta)$ above the initial line. 6
 - b) Find the mass of the plate in the shape of the curve $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$, the density being 6 given by $\rho = \mu xy$.

c) Evaluate
$$\int_{0}^{\log_{e}^{2}} \int_{0}^{x} \int_{0}^{x+\log_{e}^{y}} e^{(x+y+z)} dz dy dx.$$
 6

7. a) Prove that
$$\left[\overline{a} \times \{\overline{b} \times (\overline{c} \times \overline{d})\}\right] \cdot \overline{d} = (\overline{b} \cdot \overline{d}) \{\overline{a} \cdot (\overline{c} \times \overline{d})\}.$$
 6

b) Find the directional derivative of $x^2 y^2 + y^2 z^2 + z^2 x^2$ at (1, 1, -2) in the direction of tangent to the curve $x = e^{-t}$, $y = 2\sin t + 1$, $z = t - \cos t$ at t = 0. 7

c) For what value of n, the vector field $\gamma^n \bar{\gamma}$ will be solenoidal?

OR

5

- 8. a) Find the tangential and normal components of acceleration at any time t, of a particle 6 whose position at time t is given by $x = e^t \cos t$, $y = e^t \sin t$.
 - b) Show that $\overline{A} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational. Find the function ϕ 6 such that $\overline{A} = \nabla \phi$.
 - c) Find the constants a and b so that the surface $ax^2 2byz = (a+4)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).
- 9. Use Stoke's theorem to evaluate $\iint_{S} (\nabla \times \overline{F}) \cdot \hat{n}$ ds, where $\overline{F} = yi + (x 2xz)j xyk$ and S 7 is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the XY-Plane.

OR

TKN/KS/16/7290

10. A vector field is given by $\overline{F} = (2y+3)i + xzj + (yz-x)k$. Evaluate $\int_{C} \overline{F} \circ d\overline{r}$ along the path 7

x = 2t, y = t, $z = t^3$ from t = 0 to t = 1.

11. a) If y is the pull required to lift a load x by means of Pully block, find a linear law of the form y = mx + c connecting y and x using the following data:

Х	12	15	21	25
у	50	70	100	120

Also compute y when x = 150 kg.

b) Use Lagrange's interpolation to find y when x = 5 from the following data.

Х	0	1	3	8
у	1	3	13	123

OR

12. a) Find the coefficient of correlation and two lines of regression using following data:

Х	1	2	3	4	5
у	2	5	3	8	7
				X	•

b) Solve the difference equation $y_{n+2} - 3y_{n+1} + 2y_n = 2n + 1 + 2^n$.

6

7

6

www.soweouti.n