B.E. Second Semester Fire Engineering (C.B.S.)

Applied Mathematics - II Paper - I

P. Pages: 3

TKN/KS/16/7290
Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Use of non programmable calculator is permitted.

1. a) Evaluate

$$
\int_{0}^{\pi / 2} \sqrt{\cot \theta} d \theta
$$

b) Evaluate

$$
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \cos \alpha \mathrm{xdx}
$$

by using the concept of differentiation under integral sign. Given

$$
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\frac{\sqrt{\pi}}{2}
$$

OR

2. a) Prove that $\int_{0}^{1} x^{n-1}[\log (1 / x)]^{m-1} d x=\frac{\sqrt{m}}{n^{m}}$.
b) Find the root mean square value of ($\mathrm{a} \sin \mathrm{pt}+\mathrm{b} \cos \mathrm{pt}$) over the interval 0 to 2π.
3. a) Trace the curve $y^{2}=x^{2}-x^{4}$.
b) Find the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.

OR

4. a) Find the volume of the solid generated by the rotation of the loop of the curve $y^{2}=x^{2}+x^{3}$ about the x-axis.
b) Find the length of the curve $x=a \cos ^{3} t, y=a \sin ^{3} t$.
5. a) Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \mathrm{dx}$ dy by changing it into polar coordinates.
b) Evaluate following integral by changing the order of integration $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$.
c) Evaluate $\iint y d x d y$, over the area bounded by $y=x^{2}$ and $x+y=2$.

OR

6. a) Evaluate $\iint \mathrm{rdr} d \theta$, over the area of the curve $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ above the initial line.
b) Find the mass of the plate in the shape of the curve $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$, the density being given by $\rho=\mu \mathrm{xy}$.
c) Evaluate $\int_{0}^{\log _{e} 2} \int_{0}^{x} \int_{0}^{x+\log _{e} y} e^{(x+y+z)} d z d y d x$.
7. a) Prove that $[\overline{\mathrm{a}} \times\{\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})\}] \cdot \overline{\mathrm{d}}=(\overline{\mathrm{b}} \cdot \overline{\mathrm{d}})\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{d}})\}$.
b) Find the directional derivative of $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$ at (1, 1, -2) in the direction of tangent to the curve $\mathrm{x}=\mathrm{e}^{-\mathrm{t}}, \mathrm{y}=2 \sin \mathrm{t}+1, \mathrm{z}=\mathrm{t}-\cos \mathrm{t}$ at $\mathrm{t}=0$.
c) For what value of n, the vector field $\gamma^{n} \bar{\gamma}$ will be solenoidal?

OR

8. a) Find the tangential and normal components of acceleration at any time t, of a particle whose position at time t is given by $\mathrm{x}=\mathrm{e}^{\mathrm{t}} \cos \mathrm{t}, \mathrm{y}=\mathrm{e}^{\mathrm{t}} \sin \mathrm{t}$.
b) Show that $\bar{A}=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is irrotational. Find the function ϕ such that $\overline{\mathrm{A}}=\nabla \phi$.
c) Find the constants a and b so that the surface $a x^{2}-2 b y z=(a+4) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.
9. Use Stoke's theorem to evaluate $\iint_{S}(\nabla \times \overline{\mathrm{F}}) \cdot \hat{\mathrm{n}}$ ds, where $\overline{\mathrm{F}}=\mathrm{yi}+(\mathrm{x}-2 \mathrm{xz}) \mathrm{j}-\mathrm{xyk}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the XY-Plane.

OR

10. A vector field is given by $\overline{\mathrm{F}}=(2 \mathrm{y}+3) \mathrm{i}+\mathrm{xzj}+(\mathrm{yz}-\mathrm{x}) \mathrm{k}$. Evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} \circ \mathrm{d} \overline{\mathrm{r}}$ along the path $\mathrm{x}=2 \mathrm{t}, \mathrm{y}=\mathrm{t}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$.
11. a) If y is the pull required to lift a load x by means of Pully block, find a linear law of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ connecting y and x using the following data:

x	12	15	21	25
y	50	70	100	120

Also compute y when $\mathrm{x}=150 \mathrm{~kg}$.
b) Use Lagrange's interpolation to find y when $\mathrm{x}=5$ from the following data.

x	0	1	3	8
y	1	3	13	123

OR

12. a) Find the coefficient of correlation and two lines of regression using following data:

x	1	2	3	4	5
y	2	5	3	8	7

b) Solve the difference equation $y_{n+2}-3 y_{n+1}+2 y_{n}=2 n+1+2^{n}$.

