B.E. (Information Technology) Fourth Semester (C.B.S.)
 Theory of Computation Paper - III

P. Pages: 3

TKN/KS/16/7388
Time : Three Hours

Max. Marks : 80

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Due credit will be given to neatness and adequate dimensions.
9. Assume suitable data whenever necessary.
10. Illustrate your answers whenever necessary with the help of neat sketches.

1. a) Construct on NFA without \in-moves corresponding to the following NFA.

b) Design a mealy and moore machine that recognizes the double occurrence of symbols 'a' in input string $\mathrm{s} \in \Sigma^{*}$ where $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.

OR

2. a) Consider the mealy machine given by following transition table. Construct a moore machine equivalent to this given mealy machine.

P.S.	N. S.			
	$\mathrm{a}=\mathrm{o}$	O / P	$\mathrm{a}=1$	O / P
$\rightarrow \mathrm{q}_{1}$	q_{3}	1	q_{2}	0
q_{2}	q_{1}	1	q_{4}	1
q_{3}	q_{2}	0	q_{1}	1
q_{4}	q_{4}	1	q_{3}	0

b) Convert following NFA to DFA

P.S.	N. S.	
	$\mathrm{a}=0$	$\mathrm{a}=1$
$\rightarrow \mathrm{q}_{0}$	$\mathrm{q}_{0}, \mathrm{q}_{1}$	q_{2}
q_{1}	q_{0}	q_{1}
q_{2}	q_{1}	$\mathrm{q}_{0}, \mathrm{q}_{1}$

3. a) Give a nondeterministic finite automat on that accepts the language generated by the expression $(a+b a+b a a a)^{*}$
b) Show that the language defined by:
i) $\mathrm{L}=\left\{\mathrm{ba}^{\mathrm{n}} \mathrm{ba}^{\mathrm{m}} / \mathrm{m}>\mathrm{n}\right\}$
ii) $L=\left\{a^{n} b^{m} / n, m\right.$ are positive integers $\}$
is not regular.

OR

4. a) Construct transition diagram for regular expression
i) $\quad \mathrm{R}=\left(\mathrm{ab}{ }^{*}\right)(\mathrm{a}+\mathrm{b})^{*}(\mathrm{~b}+\mathrm{ab})$
ii) $\quad \mathrm{R}=(0+1)^{*}(010+101)(0+1)^{*}$
b) Consider the following productions of the regular grammar G:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{aB}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{c}
\end{aligned}
$$

Find the regular expression corresponding to regular grammar G.
5. a) Consider the context free G_{1} that consist of following production:
$S \rightarrow \mathrm{aB} \mid \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{a}|\mathrm{aS}| \mathrm{bAA}$,
B $\rightarrow \mathrm{b}|\mathrm{bS}| \mathrm{aBB}$
for the string a a bba ba b, find
i) Leftmost derivation
ii) Rightmost derivation
iii) Parse tree
b) Reduce the following grammar into Greibach normal form
$S \rightarrow a|A A| B A$
$A \rightarrow a|A B| b$
$\mathrm{B} \rightarrow \mathrm{a}$

OR

6. a) Create a pushdown automaton that accepts the language $\left\{a^{2 n} b^{n} / n>0\right\}$. Show that PDA accepts aaaa $b b$ and that it rejects a aa b.
b) Determine whether the grammar implicitly defined by the following rules is ambiguous. If the grammar is ambiguous, determine whether the language it generates is inherently ambiguous.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{abA}| \epsilon \\
& \mathrm{B} \rightarrow \mathrm{bB}|\mathrm{abB}| \epsilon
\end{aligned}
$$

7. a) Write in detail different types of Turing machine.
b) Construct a Turing machine that produces 2 's complement of input binary sequence.

OR

8. a) Design a Turing machine to accept the language $L=\left\{0^{n} 1^{n} 2^{n} / \mathrm{n} \geq 0\right\}$.
b) Write short note on:
i) LBA
ii) Counter machine.
9. a) Write short notes on:
i) Post correspondence problem.
ii) Church's hypothesis.
b) Ackermann's function is defined by

$$
A(o, y)=y+1
$$

$\mathrm{A}(\mathrm{x}+1,0)=\mathrm{A}(\mathrm{x}, 1)$
$\mathrm{A}(\mathrm{x}+1, \mathrm{y}+1)=\mathrm{A}(\mathrm{x}, \mathrm{A}(\mathrm{x}+1) \mathrm{y}))$
Compute:
i) $\mathrm{A}(1,1)$,
ii) $\mathrm{A}(1,2)$,
iii) $\mathrm{A}(1,3)$.

OR

10. a) State which of the following PCP's have a solution:
i) $\quad\{(01,011),(1,10),(1,11)\}$
ii) $\left\{\left(\mathrm{b}^{3}, \mathrm{ab}^{2}\right),\left(\mathrm{b}^{3}, \mathrm{bab}^{3}\right)\right\}$
b) Explain properties of Recursive and Recursively enumerable language.
11. a) Show that function $f(x, y)=x+y$ is Primitive recursive.
b) Write short notes on :
i) Bounded minimalization.
ii) unbounded minimalization.

OR

12. a) Explain mod and div function with example.
b) What do you mean by primitive recursive function over n and over a, b ?

