B.E. (Information Technology) Fourth Semester (C.B.S.) **Theory of Computation Paper - III**

P. Pages: 3 Time : Three Hours

- Notes : 1. All questions carry marks as indicated.
 - Solve Question 1 OR Questions No. 2. 2.
 - 3. Solve Question 3 OR Questions No. 4. 4. Solve Question 5 OR Questions No. 6.

 - Solve Question 7 OR Questions No. 8. 5.
 - Solve Question 9 OR Questions No. 10. 6. Solve Question 11 OR Questions No. 12. 7.
 - Due credit will be given to neatness and adequate dimensions. 8.

h

- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- Construct on NFA without \in -moves corresponding to the following NFA. 1. a)

h

in input string $s \in \Sigma^*$ where $\Sigma = \{a, b\}$. OR

Design a mealy and moore machine that recognizes the double occurrence of symbols 'a'

 q_3

Consider the mealy machine given by following transition table. Construct a moore machine 2. 7 a) equivalent to this given mealy machine.

P. S.	N. S.					
P. S.	a = 0	O / P	a = 1	O / P		
\rightarrow q ₁	q ₃	1	q ₂	0		
q_2	q_1	1	q_4	1		
q_3	q_2	0	q_1	1		
q_4	q_4	1	q ₃	0		

b) Convert following NFA to DFA

b)

P. S.	N. S.		
г. э.	a = 0	a = 1	
\rightarrow q ₀	q ₀ , q ₁	q_2	
q_1	q ₀	q_1	
(p)	q_1	q ₀ , q ₁	

1

7

TKN/KS/16/7388

Max. Marks: 80

7

7

3. a) Give a nondeterministic finite automat on that accepts the language generated by the expression $(a + ba + baaa)^*$

b) Show that the language defined by: i) $L = \{ba^n ba^m / m > n\}$ ii) $L = \{a^n b^m / n, m \text{ are positive integers}\}$ is not regular.

OR

7

7

4. Construct transition diagram for regular expression 7 a) $R = (ab^{*})(a+b)^{*}(b+ab)$ i) $R = (0+1)^* (010+101) (0+1)^*$ ii) b) Consider the following productions of the regular grammar G: 7 $S \rightarrow a A | a$ $A \rightarrow a A | a B | a$ $B \rightarrow b B | c$ Find the regular expression corresponding to regular grammar G. 5. Consider the context free G₁ that consist of following production: 7 a) $S \rightarrow a B | b A$ anel $A \rightarrow a | a S | b A A$, $B \rightarrow b|bS|aBB$ for the string a a bba ba b, find Leftmost derivation i) ii) **Rightmost derivation** iii) Parse tree Reduce the following grammar into Greibach normal form b) 6 $S \rightarrow a |AA|BA$ $A \rightarrow a | A B | b$ $B \rightarrow a$

OR

- 6. a) Create a pushdown automaton that accepts the language $\{a^{2n} b^n/n > 0\}$. Show that 7 PDA accepts aaaa bb and that it rejects a aa b.
 - b) Determine whether the grammar implicitly defined by the following rules is ambiguous. If the grammar is ambiguous, determine whether the language it generates is inherently ambiguous.

$$\begin{split} S &\to A B \\ A &\to a A | a b A | \in \\ B &\to b B | a b B | \in \end{split}$$

7.	a)	Write in detail different types of Turing machine.	7				
	b)	Construct a Turing machine that produces 2's complement of input binary sequence.	6				
		OR					
8.	a)	Design a Turing machine to accept the language $L = \{0^n \ 1^n \ 2^n / n \ge 0\}$.	7				
	b)	Write short note on:i) LBAii) Counter machine.	6				
9.	a)	 Write short notes on: i) Post correspondence problem. ii) Church's hypothesis. 	6				
	b)	Ackermann's function is defined by A(o, y) = y+1 A(x+1, 0) = A(x, 1) A(x+1, y+1) = A(x, A(x+1)y)) Compute: i) $A(1, 1),$ ii) $A(1, 2),$ iii) $A(1, 3).$	7				
10.	a)	State which of the following PCP's have a solution: i) $\{(01, 011), (1, 10), (1, 11)\}$ ii) $\{(b^3, ab^2), (b^3, bab^3)\}$	7				
	b)	Explain properties of Recursive and Recursively enumerable language.					
11.	a)	Show that function $f(x, y) = x + y$ is Primitive recursive.	6				
	b)	Write short notes on :i) Bounded minimalization.ii) unbounded minimalization.	7				
OR							
12.	a)	Explain mod and div function with example.	6				

b) What do you mean by primitive recursive function over n and over a, b?

7

www.soweouti.n