B.E. (Electrical Engineering (Electronics & Power)) Fourth Semester (C.B.S.)

Applied Mathematics - IV

Paper - I

P. Pages: 3 Time: Three Hours

TKN/KS/16/7366

Max. Marks: 80

ii)

Notes: 1.

- All questions carry marks as indicated.
- 2. Solve Question 1 OR Questions No. 2.
- Solve Question 3 OR Questions No. 4. 3.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- Solve Question 9 OR Questions No. 10. 6.
- Solve Question 11 OR Questions No. 12. 7.
- 8. Use of non programmable calculator is permitted.
- 1. Define: a)

6

- Step signal i)
- iii) Parabolic signal and Find their laplace transform.

For a system shown below, find the value of 'a' such that the damping ratio is 0.5. b) Determine the rise time, peak time in the unit step response.

6

OR

Ramp signal

- Discuss time response of a general second order system in a unit step input. 2. a)

6

b) Define transfer function and obtain it for series R-C circuit. 6

- **3.** If $z\{f(n)\} = f(z)$ then prove that $z\{f(n+k)\} = z^k \left[F(z) - \sum_{i=0}^{k-1} f(i) z^{-i} \right]$ for k > 0. 6 a)
 - b) Find z-Transform of $\frac{(k+1)(k+2)}{2!}a^k$

6

OR

4. a) Find inverse z-transform of $\frac{3z^2 + 2z + 1}{z^2 - 3z + 2}$

6

b) Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given $y_0 = 0 = y_1$. 6

5. Define: a)

6

6

6

6

6

6

- i) Fuzzy set
- ii) α - level set
- iii) Normalized fuzzy set.
- b) If $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3\}$ The fuzzy set A of X, fuzzy set B of Y are defined as follows:

$$A = \{0.2/x_1, 0.3/x_2, 0.5/x_3\}$$

$$B = \{0.5/y_1, 0.6/y_2, 0.7/y_3\}$$

Then Find A×B.

OR

If fuzzy sets are -**6.** a)

$$A = \frac{0.3}{30} + \frac{0.7}{60} + \frac{1}{100}, B = \frac{0.2}{20} + \frac{0.4}{40} + \frac{0.6}{60}, C = \frac{0.3}{50} + \frac{0.6}{100}$$

Find fuzzy relation $R = A \times B$, $S = B \times C$. Also find $R \cup S$.

Given the membership function for the fuzzy sets A, B and C as b)

$$\mu_A(x) = \frac{x}{x+2}$$
, $\mu_B(x) = 2^{-x}$ and $\mu_C(x) = \frac{1}{1+10(x-2)^2}$

Where $x = \{0,\,1,\,2,\,3,\,4,\,5\}$ Plot the graph $\,\mu_A\,,\mu_B\,$ and $\,\mu_C\,$ check whether

- $A \cup (\overline{A} \cap B) = A \cup B$
- $A \cap \overline{A} = \phi$ ii)
- 7. a) 6 Find the root of the equation $x + \log_{10}^{x} - 3.375 = 0$ correct upto three decimal places. Using Newton Raphson method.
 - Apply Crout's method to solve the equations: b) 3x + 2y + 7z = 4

$$2x + 3y + z = 5$$

 $3x + 4y + z = 7$

$$2x + 3y + E = 3$$

$$2x + 4x + = 3$$

$$3x + 4y + z = 7$$

OR

- 8. 6 a) Find the root of $e^x - 4x = 0$ by Regula falsi method correct upto third decimal place.
 - b) Solve by Gauss - Seidal method 2x - 3y + 20z = 2520x + y - 2z = 17

$$3x + 20y - z = -18$$

Using Euler's modified method solve $\frac{dy}{dx} = x + y$ for x = 0.1, given that y(0) = 1, h = 0.05. 9. 7 a)

Use Runge Kutta method to find approximate value of y for x = 0.2 when $\frac{dy}{dx} = xy + y^2$ given y(0) = 1, h = 0.1.

7

7

OR

- 10. a) Use Milne's predictor correction method to find y(0.4) from $\frac{dy}{dx} = 1 + xy^2$ y(0) = 1, y(0.1) = 1.105, y(0.2) = 1.223, y(0.3) = 1.355
 - Solve $\frac{dy}{dx} = yz + x$, $\frac{dz}{dx} = xz + y$ for x = 0.2 given y(0) = 1, z(0) = -1, by Runge Kutta method upto 3 decimals.
- 11. a) A random variable X has density function $f(x) = kx^{2} 1 \le x \le 2$ = kx 2 < x < 3= 0 otherwise

Find the mean, median and mode for a random variable x having probability density

Find the constant k and the distribution function.

- b) Find the mean, median and mode for a random variable x having probability density function $f(x) = 4x(1-x^2) \qquad 0 < x < 1$ $= 0 \qquad \text{otherwise}$
- c) Find moment generating function of a random variable $X = \frac{1}{2} \operatorname{Prob} \frac{1}{2}$ $= -\frac{1}{2} \operatorname{Prob} \frac{1}{2}$ Also find first four moments about origin.

OR

- **12.** a) Find the probability of getting between 2 heads to 4 heads in 10 tosses of fair coin using normal distribution.
 - b) Find the coefficient of i) skewness and ii) kartosis of distribution $f(x) = 4x(9-x^2)/81 \quad 0 < x \le 3$ $= 0 \quad \text{otherwise}$
 - Can the function $f(x) = c(1-x^2)$ $0 \le x \le 1$ = 0 otherwise be a distribution function? Explain.

MININ SOLVEOUR IN