B.E. (Civil Engineering) Fifth Semester (C.B.S.) **Structural Analysis - II**

P. Pages : 4 Time : Three Hours		S * 0 8 5 8 *	TKN/KS/16/7406 Max. Marks : 80
Notes :	2.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2.	

3. Solve Question 3 OR Questions No. 4.

- 4. Solve Question 5 OR Questions No. 6.
- Solve Question 7 OR Questions No. 8. 5.
- Solve Question 9 OR Questions No. 10. 6.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.

1. Analyse the frame shown in fig: 1 using Kani's method and draw its BMD.

2. Analyse the frame shown in fig : 2 and draw its BMD. Use Kani's method.

1

14

3. A beam is loaded as shown in fig : 3. Plot the bending moment diagram if the support A 13 settles by 10 mm, B settles by 20 mm and C settles by 15 mm. Take $EI = 5100 \text{ kN.m}^2$. Use MDM.

4. Analyse the structure loaded as shown in fig : 4 by the moment distribution method and 13 sketch bending moment.

5. Find member forces for the plane truss shown in fig : 5. Member BC is too long by 3 mm. 14 Use stiffness method. c/s area of all members is 600 mm^2 . Assume E = 200 GPa.

OR

Fig:7

9. Analyse the plane frame shown in fig : 8 and draw its BMD neglecting axial deformations. Use stiffness method.

13

10. Using stiffness method, analyse the rigid jointed plane frame shown in fig : 9. Assume uniform flexural rigidity for all members as EI. Neglect axial deformations.

- 11. a) Derive an equation of motion for an undamped single degree of freedom system for free 6 vibration.
 - b) A cantilever beam 3 m long supports a mass of 500 kg at its free end find the natural period and natural frequency of vibration. Take $E = 2.1 \times 10^6 \text{ kg/cm}^2$ and $I = 1300 \text{ cm}^4$.

OR

Using finite element method, derive the displacement matrix. Also find member strain and 13 stress, for the steel specimen shown in fig. 10.

 $\frac{C}{S}$ area at (1) – (1) is equal to = 425 mm² $\frac{C}{S}$ area at (2) – (2) is equal to = 125 mm².

7